Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 188: 114662, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739712

RESUMO

Sewage pollution from on-site sewage disposal systems and injection wells is impacting coral reefs worldwide. Our study documented the presence and impact of sewage on South Kohala's coral reefs, on Hawai'i Island, through benthic water quality and macroalgal sampling (fecal indicator bacteria, nutrients, δ15N macroalgal tissue), NO3- stable isotope mixing models, water motion measurements, and coral reef surveys. Sewage pollution was moderate on the offshore reef from benthic seeps, and water motion mixed and diluted it across the benthos. These conditions likely contribute to the dominance of turf algae cover, and the severity and prevalence of growth anomalies and algal overgrowth on corals. Use of multiple indicators and studying water motion was necessary to assess sewage pollution and identify environmental drivers associated with impaired coral health conditions. Methods used in this study can be utilized by natural resource managers to identify and reduce anthropogenic stressors to coral reefs.


Assuntos
Antozoários , Recifes de Corais , Animais , Esgotos/análise , Havaí , Qualidade da Água
2.
Environ Microbiol ; 24(9): 4193-4208, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35691616

RESUMO

Coral reefs are highly productive ecosystems with distinct biogeochemistry and biology nestled within unproductive oligotrophic gyres. Coral reef islands have often been associated with a nearshore enhancement in phytoplankton, a phenomenon known as the Island Mass Effect (IME). Despite being documented more than 60 years ago, much remains unknown about the extent and drivers of IMEs. Here we utilized 16S rRNA gene metabarcoding as a biological tracer to elucidate horizontal and vertical influence of an IME around the islands of Mo'orea and Tahiti, French Polynesia. We show that those nearshore oceanic stations with elevated chlorophyll a included bacterioplankton found in high abundance in the reef environment, suggesting advection of reef water is the source of altered nearshore biogeochemistry. We also observed communities in the nearshore deep chlorophyll maximum (DCM) with enhanced abundances of upper euphotic bacterioplankton that correlated with intrusions of low-density, O2 rich water, suggesting island influence extends into the DCM.


Assuntos
Antozoários , Ecossistema , Animais , Clorofila A , Recifes de Corais , RNA Ribossômico 16S/genética , Água
3.
NPJ Biofilms Microbiomes ; 7(1): 84, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34853316

RESUMO

Work on marine biofilms has primarily focused on host-associated habitats for their roles in larval recruitment and disease dynamics; little is known about the factors regulating the composition of reef environmental biofilms. To contrast the roles of succession, benthic communities and nutrients in structuring marine biofilms, we surveyed bacteria communities in biofilms through a six-week succession in aquaria containing macroalgae, coral, or reef sand factorially crossed with three levels of continuous nutrient enrichment. Our findings demonstrate how biofilm successional trajectories diverge from temporal dynamics of the bacterioplankton and how biofilms are structured by the surrounding benthic organisms and nutrient enrichment. We identify a suite of biofilm-associated bacteria linked with the orthogonal influences of corals, algae and nutrients and distinct from the overlying water. Our results provide a comprehensive characterization of marine biofilm successional dynamics and contextualize the impact of widespread changes in reef community composition and nutrient pollution on biofilm community structure.


Assuntos
Antozoários , Recifes de Corais , Animais , Bactérias/genética , Biofilmes , Nutrientes
4.
PeerJ ; 7: e6609, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918757

RESUMO

Plant-associated microbes are critical players in host health, fitness and productivity. Despite microbes' importance in plants, seeds are mostly sterile, and most plant microbes are recruited from an environmental pool. Surprisingly little is known about the processes that govern how environmental microbes assemble on plants in nature. In this study we examine how bacteria are distributed across plant parts, and how these distributions interact with spatial gradients. We sequenced amplicons of bacteria from the surfaces of six plant parts and adjacent soil of Scaevola taccada, a common beach shrub, along a 60 km transect spanning O'ahu island's windward coast, as well as within a single intensively-sampled site. Bacteria are more strongly partitioned by plant part as compared with location. Within S. taccada plants, microbial communities are highly nested: soil and rhizosphere communities contain much of the diversity found elsewhere, whereas reproductive parts fall at the bottom of the nestedness hierarchy. Nestedness patterns suggest either that microbes follow a source/sink gradient from the ground up, or else that assembly processes correlate with other traits, such as tissue persistence, that are vertically stratified. Our work shines light on the origins and determinants of plant-associated microbes across plant and landscape scales.

5.
Proc Biol Sci ; 285(1880)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29875294

RESUMO

There is a long history of examining the impacts of nutrient pollution and pH on coral reefs. However, little is known about how these two stressors interact and influence coral reef ecosystem functioning. Using a six-week nutrient addition experiment, we measured the impact of elevated nitrate (NO-3) and phosphate (PO3-4) on net community calcification (NCC) and net community production (NCP) rates of individual taxa and combined reef communities. Our study had four major outcomes: (i) NCC rates declined in response to nutrient addition in all substrate types, (ii) the mixed community switched from net calcification to net dissolution under medium and high nutrient conditions, (iii) nutrients augmented pH variability through modified photosynthesis and respiration rates, and (iv) nutrients disrupted the relationship between NCC and aragonite saturation state documented in ambient conditions. These results indicate that the negative effect of NO-3 and PO3-4 addition on reef calcification is likely both a direct physiological response to nutrients and also an indirect response to a shifting pH environment from altered NCP rates. Here, we show that nutrient pollution could make reefs more vulnerable to global changes associated with ocean acidification and accelerate the predicted shift from net accretion to net erosion.


Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Nitratos/análise , Fosfatos/análise , Água do Mar/química , Alga Marinha/crescimento & desenvolvimento , Poluição Química da Água/efeitos adversos , Animais , Biota/fisiologia , Carbonatos/química , Eutrofização , Havaí , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...